b) (-1.25)(-2.84)

When there are more than 2 digits in both numbers being multiplied, use a calculator. The rational numbers have the same sign, so their product is positive.

Key in 1.25×2.84 to display: 3.55

$$(-1.25)(-2.84) = 3.55$$

Discuss

- 1. Why does it help to predict the sign of a product before you multiply 2 rational numbers?
- 2. Why does it make sense that the rules for signs when you multiply integers must apply when you multiply rational numbers?

Practice

Check

- 3. Predict which products are greater than 0, then multiply to determine each product. Explain the strategy you used to predict.
 - a) $3 \times (-5.2)$
 - b) $2.6 \times (-4)$
 - c) $(-1.3) \times 5$
 - d) $(-0.9) \times (-7.1)$
- 4. Predict which products are less than 0, then multiply to determine each

- **5.** Determine each product. Estimate to place the decimal point. 18 a) (-0.64)(0.2) b) (-0.5)(-5.71) 2. 855 c) (-4.13)(-0.8) d) (0.7)(8.5) 3.304 5.95
 - **6.** Which of the following expressions have the same product as $\left(-\frac{3}{4}\right)\left(\frac{5}{2}\right)$?

Explain how you know.

(a)
$$(\frac{5}{2})(-\frac{3}{4})$$
 (b) $(\frac{3}{4})(-\frac{5}{2})$ (c) $(-\frac{3}{2})(\frac{5}{4})$
(d) $(\frac{3}{4})(\frac{5}{2})$ (e) $(\frac{3}{2})(-\frac{5}{4})$ f) $(-\frac{3}{4})(-\frac{5}{2})$

- to predict.

 a) $(-3) \times \frac{2}{3} 7$ b) $\left(-\frac{1}{4}\right) \times (-5) / \frac{1}{4}$ c) $\left(\frac{4}{5}\right) \times (-2)$ d) $\left(-\frac{1}{2}\right) \times \frac{7}{8}$ 7. Determine each product.

 a) $\left(-\frac{1}{3}\right)\left(\frac{2}{5}\right) \frac{2}{15}$ b) $\left(\frac{1}{4}\right)\left(-\frac{3}{5}\right) \frac{3}{20}$ c) $\left(\frac{4}{5}\right)\left(\frac{1}{2}\right) \times \frac{7}{8}$ c) $\left(\frac{4}{5}\right)\left(\frac{1}{2}\right) \times \frac{7}{8}$ d) $\left(-\frac{5}{6}\right)\left(-\frac{2}{3}\right) \times \frac{5}{15}$

Apply

6. At a sea port, the effect of the tide changed the water level by -5.6 m in 3.5 h. What was the mean change in water level per hour?

7. Determine each quotient without a calculator. Estimate to place the decimal point in the quotient.

a) $0.32 \div 0.4$

- b) (-1.17) ÷ 0.8 _1,4625
- c) $0.25 \div (-0.6)$ _0.416
- d) $(-1.02) \div (-0.2)$ 5.1
- e) $3.76 \div (-0.3) 12.53$
- f) $3.15 \div 0.9$ 3, 5
- 8. On a winter's day, the temperature at 6 P.M. was 0°C. Suppose the temperature decreased by 2.5°C each hour until it was -12.5°C. How long did it take to reach this temperature? How do you know?
- **9.** Use a calculator to determine each quotient. a) $20.736 \div (-1.8)$ ~ 11.52
 - b) $(-27.94) \div 1.2 23.283$
 - c) $(-84.41) \div (-2.3)$ 36.
 - d) 23.04 ÷ 4.8 4.8
 - e) $76.63 \div (-7.5) 10.22$
 - f) $(-0.1081) \div 0.45 0.24$

10. Assessment Focus Suppose each rational number below is divided by -0.5. Predict which quotients are greater than -10. Explain the strategies you used to predict. Then evaluate only those quotients that are greater than -10.

a) -20.5 b) 18.8

c) 10.7

- 11. To pay for a skiing holiday in Whistler, Paige borrowed \$1450.50 from her parents. She pays back \$30.75 each week.
 - a) How many weeks will it be until Paige is no longer in debt? Justify your answer.
 - b) How did you use rational numbers to calculate the answer in part a?

12. Determine each quotient.

a) $\frac{5}{4} \div \left(-\frac{7}{6}\right) - \frac{15}{14}$ b) $\frac{3}{10} \div \frac{12}{5}$ 7. c) $\left(-\frac{3}{4}\right) \div \left(-1\frac{1}{8}\right)$ d) $\left(-4\frac{3}{5}\right) \div \frac{3}{4}$ e) $3\frac{2}{3} \div \left(-2\frac{1}{4}\right)$ 17. f) $3\frac{4}{9} \div 6\frac{1}{3}$ 31. So a freezer is set at -5.5° C.

13. A thermometer on a freezer is set at -5.5°C. Each time the freezer door is opened, the temperature increases by 0.3°C. Suppose there is a power outage. How many times can the door be opened before the temperature of the freezer increases to 5°C? Justify your solution.

Discuss

the ideas

- 1. What does a fraction bar indicate?
- **2.** As the number of operations increases and the expressions become more complex, it is easy to make mistakes.

 What can you do to prevent yourself making mistakes?

Practice

Check

- Evaluate. Do not use a calculator.

 a) $2.3 (-1.6) \times (0.8)$ b) $(-14.8) \times 0.9 3.1$ c) $(-12.8) \div (-0.2) + 4.5 \div 0.5$ d) $(-4.8) \times (-0.4 + 0.6)^2$
- 4. Evaluate. Do not use a calculator.
 - a) $\frac{1}{2} + \left(-\frac{3}{4}\right) \times \frac{1}{3}$ b) $\left(-\frac{5}{4}\right) \div \left(-\frac{1}{4} + \frac{3}{2}\right) \left(-\frac{1}{4} + \frac{3}{2}\right)$ c) $\left(-\frac{7}{10}\right) \div \left(-\frac{2}{5}\right) - \left(-\frac{1}{4}\right) \times \frac{1}{2}$ d) $\frac{6}{5} \times \left(-\frac{2}{3} + \frac{8}{3}\right)^2 - \frac{5}{12}$

Apply

- 5. a) Use a calculator to evaluate the expression below. Key in the expression as it is written.
 -2.8 1.4 × 4.5
 - b) Does the calculator follow the order of operations or does it perform operations from left to right? How did you find out?
- 6. Estimate which expression has the greatest value. Then use a calculator to evaluate each expression to verify your prediction.

 a) $9.1 3.5 \times (4.2)^2$ b) $(9.1 3.5) \times (4.2)^2$ c) $9.1 (3.5 \times 4.2)^2$ d) $9.1[(-3.5) \times (4.2)^2]$

7. Evaluate.
a)
$$\left(-\frac{2}{3}\right) \div \frac{1}{4} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{3}$$
 - 2 17
b) $\left(-\frac{2}{3}\right) \div \left[\frac{1}{4} + \left(-\frac{1}{2}\right)\right] \times \frac{1}{3}$ - 8
c) $\left(-\frac{2}{3}\right) \div \left[\frac{1}{4} - \left(-\frac{1}{2}\right)\right] \times \frac{1}{3}$ - 8
d) $\left(-\frac{2}{3}\right) \div \left[\frac{1}{4} + \left(-\frac{1}{2}\right) \times \frac{1}{3}\right]$ - 8

8. Find the errors in each solution. Write the correct solution.

a)	$(-3.7) \times (-2.8 + 1.5) - 4.8 \div (-1.2)$
1	$= (-3.7) \times (1.3) - 4.8 \div (-1.2)$
	= -4.81 - 4.8 ÷ (-1.2)
	= -9.61 ÷ (-1.2)
	= 8.0083
	$ \begin{aligned} & -\frac{3}{8} - \frac{4}{5} \times \frac{3}{10} \div \left(-\frac{4}{5} \right) \\ & = -\frac{15}{40} - \frac{32}{40} \times \frac{3}{10} \div \left(-\frac{4}{5} \right) \\ & = -\frac{47}{40} \times \frac{3}{10} \div \left(-\frac{4}{5} \right) \\ & = -\frac{141}{400} \div \left(-\frac{4}{5} \right) \\ & = -\frac{141}{400} \times \left(-\frac{5}{4} \right) \\ & = \frac{(-141) \times (-5)}{400 \times 4} \\ & = \frac{705}{1600} \end{aligned} $

9. A family moves from Chicago to Saskatoon. A company that rents moving trucks uses this formula, C = 1.15[21.95d + 0.035(k - 120)],to determine the cost, including tax, of renting a truck for d days and k kilometres, when k > 120. The distance from Chicago to Saskatoon is 2400 km and the family travels for 4 days. What is the cost to rent the truck?

10. A can of soup is a cylinder with radius 3.5 cm and height 11.5 cm.

Use the formula:

Surface area = $2\pi r^2 + 2\pi r \times \text{height}$, where r is the radius of the can

- a) Determine the area of tin needed to make the can, to the nearest square centimetre.
- b) Explain how you used the order of operations in part a.
- 11. a) Use this formula to convert each Fahrenheit temperature below to Celsius: $C = \frac{F - 32}{1.8}$
- i) 0°F ii) -40°F iii) -53°F

- b) Here is another way to write the formula in part a: $C = \frac{5}{9}(F - 32)$ Use this formula to convert each Fahrenheit temperature below to Celsius: iii) 32°F i) 50°F ii) $-13^{\circ}F$
- c) Which formula in parts a and b was easier to use? Explain your choice.
- 12. Evaluate. State the order in which you

carried out the operations.
a)
$$\left(-4\frac{1}{2}\right) + \left(-\frac{2}{3}\right) \times 2\frac{3}{4}$$

b)
$$\left(-3\frac{2}{5}\right) \times \left(-1\frac{5}{6}\right) + \frac{3}{10}$$
 6 15

b)
$$\left(-3\frac{2}{5}\right) \times \left(-1\frac{5}{6}\right) + \frac{3}{10}$$
 6 15
c) $\left(-3\right) \div \left(-\frac{4}{5}\right) + \left(-\frac{5}{12}\right) \times 1\frac{1}{2}$ 3 8

d)
$$\left(1\frac{5}{8}\right) - \left(-2\frac{3}{4} + 2\right)\left(-2\frac{3}{4} + 2\right) \left(\frac{1}{16}\right)$$

(13.) Use a calculator to evaluate. Write the answers to the nearest hundredth where necessary.

hundredth where necessary.
a)
$$2.3 + (-11.2) \div (-0.2) - 3.7$$
 54.6

b)
$$(-3.4) \times 0.7 - (-1.8)(-1.8)$$
 5.6 2

c)
$$\frac{0.67 - 4.2 \div (-0.2)}{(-7.3 + 8.6)^2}$$
 12.82

d)
$$\frac{8.9 \times (-3.1 + 22.7)^2 + 4.7}{(-9.6) \div 0.04 - 0.4}$$

- 14. On one day in Black Lake, Saskatchewan, the maximum temperature was -8.1°C and the minimum temperature was -16.7° C.
 - a) What was the mean temperature that day?
 - b) How did you use the order of operations in part a?

